首页> 外文OA文献 >Unsupervised Spectral-Spatial Feature Learning via Deep Residual Conv-Deconv Network for Hyperspectral Image Classification
【2h】

Unsupervised Spectral-Spatial Feature Learning via Deep Residual Conv-Deconv Network for Hyperspectral Image Classification

机译:通过深度残差Conv-Deconv网络进行无监督的光谱空间特征学习以实现高光谱图像分类

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Supervised approaches classify input data using a\udset of representative samples for each class, known as Training samples. The collection of such samples is expensive and time demanding. Hence, unsupervised feature learning, which has a quick access to arbitrary amounts of unlabeled data, is conceptually of high interest. In this paper, we propose a novel network architecture, fully Conv–Deconv network, for unsupervised spectral–spatial feature learning of hyperspectral images, which is able to be trained in an end-to-end manner. Specifically, our network is based on the so-called encoder–\uddecoder paradigm, i.e., the input 3-D hyperspectral patch is\udfirst transformed into a typically lower dimensional space via a convolutional subnetwork (encoder), and then expanded to reproduce the initial data by a deconvolutional subnetwork (decoder). However, during the experiment, we found that such a network is not easy to be optimized. To address this problem, we refine the proposed network architecture by incorporating:\ud1) residual learning and 2) a new unpooling operation that can use memorized max-pooling indexes. Moreover, to understand the “black box,” we make an in-depth study of the learned Feature maps in the experimental analysis. A very interesting discovery is that some specific “neurons” in the first residual block of the proposed network own good description power for semantic visual patterns in the object level, which provide an opportunity to achieve “free” object detection. This paper, for the first time in the remote sensing community, proposes an end-to-end\udfully Conv–Deconv network for unsupervised spectral–spatial feature learning. Moreover, this paper also introduces an in-depth investigation of learned features. Experimental results on two widely used hyperspectral data, Indian Pines and Pavia University, demonstrate competitive performance obtained by the proposed methodology compared with other studied approaches.
机译:监督方法使用每个类的代表性样本的总和来分类输入数据,称为训练样本。这种样品的收集是昂贵且费时的。因此,从概念上讲,可以快速访问任意数量的未标记数据的无监督特征学习。在本文中,我们提出了一种新颖的网络架构,即完全Conv-Deconv网络,用于无监督的高光谱图像光谱空间特征学习,并且可以端到端的方式对其进行训练。具体来说,我们的网络基于所谓的“编码器-\ uddecoder”范式,即,首先通过卷积子网络(编码器)将输入的3-D高光谱斑块转换成典型的低维空间,然后进行扩展以重现反卷积子网(解码器)的初始数据。但是,在实验过程中,我们发现这样的网络不容易优化。为了解决此问题,我们通过合并以下内容来完善建议的网络体系结构:\ ud1)残差学习和2)可以使用存储的最大池索引的新的分池操作。此外,为了理解“黑匣子”,我们在实验分析中对学习到的特征图进行了深入研究。一个非常有趣的发现是,在提议的网络的第一个残差块中,某些特定的“神经元”对对象级别的语义视觉模式具有良好的描述能力,这为实现“自由”对象检测提供了机会。本文是遥感社区中的第一次,提出了一种端到端\完全Conv-Deconv网络,用于无监督的光谱空间特征学习。此外,本文还介绍了对已学习功能的深入研究。在印度松树和帕维亚大学这两个广泛使用的高光谱数据上的实验结果表明,与其他研究方法相比,该方法具有竞争优势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号